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We have performed continuum discretized coupled channel (CDCC) calculations for the 6Li + 59Co, 144Sm,
and 208Pb systems, to investigate the dependence of the relative importance of nuclear and Coulomb breakup on
the target charge (mass) at near-barrier energies. The calculations were in good agreement with the experimental
elastic scattering angular distributions for these systems and then their predictions to the nuclear, Coulomb, and
total breakup were investigated. Although the relative importance of the nuclear breakup is, as expected, larger
for lighter targets, this effect is not very pronounced. We also investigate a scaling of the nuclear breakup with
the target mass and we compare the predictions for the integrated total breakup cross sections with experimental
fusion cross sections at similar energies.
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I. INTRODUCTION

The breakup of weakly bound nuclei has been a subject
of great interest in the last years [1], both theoretically
and experimentally. Among the main investigations within
this field, there are studies of the breakup cross section
and the influence of the breakup process on other reaction
channels. The conclusions from those investigations may
change with the characteristics of the weakly bound nuclei
(from now on we will assume that they are the projectiles),
the targets, and energy regime involved. For example, halo
nuclei which have extremely low breakup energy threshold
may behave differently from stable weakly bound nuclei like
6Li, 7Li, and 9Be. Usually, it is assumed that Coulomb breakup
predominates over nuclear breakup when heavy targets are
involved. The situation may be different in the case of light
targets. Thus, the nature of the breakup process should depend
strongly on the target mass.

Regarding the influence of the breakup process on the fusion
cross sections, at the present there is a general qualitative
understanding that breakup enhances fusion at sub-barrier
energies, whereas it produces some suppression above the
barrier [2,3]. Concerning the energy dependence of the optical
potential in the scattering of weakly bound systems, several
works show a behavior different from the one found for tightly
bound systems. This behavior is usually called the breakup
threshold anomaly (BTA) [4]. Recently it has been shown
experimentally that transfer processes followed by breakup
may predominate over direct breakup of stable weakly bound
nuclei at sub-barrier energies [5–8].

In the present work we investigate the breakup process
evaluating separate contributions from the Coulomb and from
the nuclear fields, as well as the Coulomb-nuclear interference.

We perform calculations for collisions of 6Li projectiles with
59Co, 144Sm, and 208Pb, at near-barrier energies. Since the
target’s atomic numbers are 27, 62, and 82, one may consider
6Li + 59Co, 6Li + 144Sm, and 6Li + 208Pb as a light system,
a medium system, and a heavy system, respectively. The
choice of these systems was based on the availability of elastic
scattering data in the literature. In this way, we could check
the reliability of our calculations through comparisons with
the scattering data.

The present paper is organised as follows. In Sec. II we
present the theoretical method used in the calculations. In
Secs. III to V we show the results and discuss them. Finally,
in Sec. VI we present the conclusions of our work.

II. CDCC CALCULATIONS

It is widely accepted that the most suitable approach to
deal with the breakup process, which feeds states in the
continuum, is the so-called continuum discretized coupled
channel (CDCC) method [9,10]. In this type of calculations,
the continuum wave functions are grouped in bins or wave
packets that can be treated similarly to the usual bound inelastic
states, since they are described by square-integrable wave
functions. In the present work we use the same assumptions
and methodology adopted in the CDCC calculations of Ref.
[11], where the elastic scattering of the 6Li + 144Sm system
was investigated. We present below a summary of the main
points of the CDCC method. Further details of the calculations
can be found in Refs. [9–11].

Collisions involving 6Li projectiles are influenced by the
continuum states, representing mainly the breakup of 6Li into
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a deuteron and an α particle. Owing to the low threshold of
this breakup reaction (Sα = 1.47 MeV), the breakup channel
is strongly coupled with the elastic channel. Thus, it is
necessary to include the continuum in the coupled channel
calculation and this can be done with the CDCC method.
For this purpose, we use the cluster model in which 6Li
is described as a bound state of the d + α system and the
breakup channel is represented by the continuum states of this
system. This model has been successfully used in previous
CDCC calculations in collisions of 6Li projectiles [12,13]. The
numerical calculations were performed using the computer
code FRESCO [14]. In the cluster model, the projectile-nucleus
interaction is written as

V (R, r, ξ ) = Vα−T(R, r, ξ ) + Vd−T(R, r, ξ ), (1)

where R is the vector joining the projectile’s and target’s
centers, r is the relative vector between the two clusters (d and
α), and ζ stands for any other intrinsic coordinate describing
the projectile-target system.

In our calculations, the continuum states of 6Li are
discretized as in Refs. [11,15,16]. Thus, we do not repeat the
details here. The interaction between the d and the α clusters
within 6Li is given by a Woods-Saxon potential, with the same
parameters as in Refs. [11,15,16].

The real parts of the Vα−T(R, r, ξ ) and Vd−T(R, r, ξ )
interactions were given by the double-folding São Paulo
potential [17]. We have assumed that the mass densities of the
d and α clusters, required for the double-folding calculation,
can be approximated by the charge densities multiplied by
two, whereas the mass densities of the 59Co, 144Sm, and 208Pb
targets were taken from the systematic study of Ref. [17].
The imaginary parts of Vα−T(R, r, ξ ) and Vd−T(R, r, ξ ) were
chosen as to represent short-range fusion absorption. They
were given by Woods-Saxon functions with depth W0 =
−50 MeV, radial parameter r0i = 1.06 fm, and diffusivity
ai = 0.2 fm. These imaginary potentials correspond to taking
ingoing wave boundary conditions.

The present CDCC calculations include also inelastic
channels, corresponding to collective excitations of the targets.
These channels were selected according to the specific nuclear
structure properties of the target. For 144Sm, the excita-
tions included were the one-phonon quadrupole (2+, E∗ =
1.660 MeV) and octupole (3+, E∗ = 1.8102 MeV) first-order
vibrations. The values of the deformation parameters were
obtained from Refs. [18] and [19] for the quadrupole and
octupole deformations, respectively. For the 208Pb target, we
consider collective 3− (E∗ = 2.6145 MeV) and 5− (E∗ =
3.1977 MeV) states. The deformation parameters were taken
from Ref. [20]. As for the 59Co target the quintuplet of
identified states associated with the 2+ collective excitations
were approximated by a single level with the energy equal
to the centroid of the multiplet and the deformation length
corresponding to that of the combined states [21].

III. RESULTS OF THE CDCC CALCULATIONS

In this section, we present the results of our CDCC
calculations for the breakup of 6Li projectiles, in collisions
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FIG. 1. Elastic scattering angular distributions for the three
systems investigated. The data for the 59Co (a), 144Sm (b), and 208Pb
(c) targets are respectively from Refs. [22,23] and [24].

with 59Co, 144Sm, and 208Pb targets. As a preliminary step,
we checked that the predictions of the method for the elastic
scattering of these systems were in good agreement with the
available data. The situation is illustrated in Fig. 1, which
compares theory and experiment at one near-barrier energy
for each system. The good agreement obtained in the case of
elastic scattering justifies the use of the model in calculations
of other processes.

A. Angular distributions in 6Li breakup

We now turn to the calculations of breakup cross sections,
with the purpose of assessing the relative importance of the
Coulomb and the nuclear contributions to the breakup process.
We begin with a study of angular distributions. In Fig. 2, we
show the breakup cross sections at three near-barrier energies
for each of the systems mentioned above. The figures exhibit
the total breakup cross section, together with the separate
contributions from Coulomb and nuclear breakup. The systems
and the collision energies are given inside each subfigure.
As a reference, we mention that the heights of the Coulomb
barrier calculated with the São Paulo potential are VB(59Co) =
12.8 MeV, VB(144Sm) = 23.8 MeV and VB(208Pb) =
29.4 MeV. Note that for each system the lowest energy in
the figure is below the barrier whereas the highest is above
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FIG. 2. (Color online) Breakup angular distributions at three near-
barrier energies for the systems discussed in the text. In each case,
we show the total breakup cross section (solid lines) together with
the cross sections for pure Coulomb (short-dashed lines) and pure
nuclear (long-dashed lines) breakup. As in the previous figure, (a),
(b), and (c) correspond, respectively, to results for the 59Co, 144Sm,
and 208Pb targets.

it. Inspecting Fig. 2, we note that at the lowest energies the
Coulomb contribution tends to dominate. In fact, for energies
much below the barrier one expects that only Coulomb breakup
can take place, owing to the short range of the nuclear forces.
On the other hand, at energies above the barrier Coulomb
breakup dominates in the breakup at forward angles whereas
nuclear breakup tends to dominate at large angles. This is
not surprising, since large angle scattering corresponds to
small impact parameters, for which the trajectories reach small
projectile-target separations, within the reach of the nuclear
forces.

The transition from the Coulomb dominated angular region
to the nuclear dominated one occurs at some crossing angle,
θ0, which is a function of the collision energy. We have
investigated the energy dependence of this angle for the three
systems of Fig. 2. The results are given in Fig. 3, which
shows the crossing angle as a function of the collision energy,
normalized with respect to the barrier height. First, we notice
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FIG. 3. (Color online) The crossing angle, θ0, above which
nuclear breakup dominates the breakup angular distribution. For
details see the text.

that the crossing angle grows monotonically as the collision
energy decreases. In this way, there is a critical energy below
which Coulomb breakup dominates at all angles. Thus, in this
energy region there is no crossing angle. The second interesting
feature of this figure is that the results have a very weak depen-
dence on the target. Thus, θ0 can be approximated as a single
function of E/VB, even for targets in different mass ranges.

B. Integrated breakup cross sections

We now investigate the total breakup cross sections,
integrating the angular distributions of the previous sub-section
over angles. Results for the systems of the previous figures at
three collision energies are given in Table I. The three energies
for the different systems correspond to approximately the same
values of Ec.m./VB.

Table I shows some interesting properties of the breakup
cross sections. First, one notices that, as expected, the Coulomb
breakup cross sections are systematically larger for heavier
systems. On the other hand, the strongest nuclear breakup
occurs for the intermediate mass 144Sm target. This is probably
associated with the distance of closest approach and the width

TABLE I. Integrated breakup cross section for the systems
discussed in the text, for three collision energies. The energies are
given in MeV and the cross sections in mb.

6Li + 59Co

Elab σ BU
Nuc σ BU

Cou σ BU
tot

(
σ BU

tot − σ BU
Nuc

)/
σ BU

Cou

11.0 0.84 1.44 1.11 0.19
13.0 4.33 5.31 5.68 0.25
14.0 8.72 9.27 11.56 0.31

6Li + 144Sm
Elab σ BU

Nuc σ BU
Cou σ BU

tot

(
σ BU

tot − σ BU
Nuc

)/
σ BU

Cou

22.0 11.3 22.1 18.8 0.34
25.0 30.0 41.6 48.0 0.43
27.0 43.6 57.3 69.6 0.45

6Li + 208Pb
Elab σ BU

Nuc σ BU
Cou σ BU

tot

(
σ BU

tot − σ BU
Nuc

)/
σ BU

Cou

27.0 8.8 34.9 29.3 0.58
29.0 22.8 46.8 37.2 0.31
33.0 38.7 66.8 82.5 0.66
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FIG. 4. (Color online) Coulomb to nuclear ratio of integrated
breakup cross section for the three systems under investigation.

of the effective barrier in this collision but a quantitative
interpretation of this behavior would require further study. An
important remark is that adding the nuclear with the Coulomb
breakup cross sections, one does not get the total breakup cross
section. For example, in the case of 6Li breakup with the 208Pb
target at 29 MeV, the Coulomb breakup cross section alone is
larger than the total breakup cross section. The same happens
for the other systems at the lowest collision energy (below the
barrier). This is a consequence of destructive Coulomb-nuclear
interference in the breakup process. Note that this effect can
also be observed in the angular distributions (e.g., Fig. 2 for
the 208Pb target at 29 MeV, around θ ∼ 120 degrees). The last
column of Table I shows the ratio (σ BU

tot − σ BU
Nuc)/σ BU

Cou. Note
that this ratio is always less than one. This fact clearly shows
the destructive character of the nuclear-Coulomb interference.

A more systematic study of the relative importance of the
Coulomb and the nuclear forces in the breakup process is
presented in Fig. 4, which shows the ratio σ BU

Cou/σ
BU
Nuc, as a

function of E/VB. One can observe that near the Coulomb
barrier this ratio is larger than unity for the three systems.
However, the relative importance of the Coulomb breakup
decreases as the energy increases. In the case of the lightest
target, the ratio becomes smaller than one for E/VB > 1.1. As
expected, for the same values of E/VB this ratio increases
with the target’s charge. However, the difference between
the Co and Sm targets, at the same relative energies, is very
small.

IV. SCALING OF THE BREAKUP CROSS SECTIONS

An interesting feature of the nuclear breakup cross section
is the so-called “scaling” law, which says that this quantity at
high enough energies (several tens of MeV/nucleon) should
depend on the mass number of the target nucleus as [25,26]

σ BU
Nuc = P1 + P2 A

1/3
T , (2)

where the parameters P1 and P2 depend on the projectile,
the structure of the target, and the bombarding energy.
Reference [26] gives results of detailed CDCC calculations
of elastic scattering and breakup cross sections for halo and
nonhalo systems. They study collisions of 8B (one proton-halo
nucleus), 11Be (one neutron-halo nucleus), and 7Be (normal,
nonhalo nucleus) projectiles, from several target nuclei. It
was found that the above scaling law works best for the
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FIG. 5. (Color online) Scaling of the nuclear breakup cross
sections as a function of A

1/3
T for the systems discussed in the text, at

Ec.m./VB = 0.84 (a), 1.00 (b), and 1.07 (c).

nuclear breakup of the normal 7Be projectile. For the halo
projectiles, the scaling law works only approximately. In fact,
the cross sections for these projectiles show a maximum for
targets of intermediate mass, decreasing for heavy targets such
as 208Pb.

In the present work we test the scaling law at lower energies,
close to the Coulomb barrier. Plotting the nuclear breakup cross
section as a function of A

1/3
T , for the same bombarding energy,

as it was done for high energies, one finds that they decreases
with the target mass. This is because the cross section changes
rapidly as the collision energy reaches the Coulomb barrier. To
eliminate this effect, we normalise the collision energy with
respect to the Coulomb barrier. That is, we compare cross
sections for the same value of Ec.m./VB.

In Fig. 5, we show the nuclear breakup cross sections of
6Li as functions of A

1/3
T . The results are for Ec.m./VB = 0.84

[panel (a)], 1.00 [panel (b)], and 1.07 [panel (c)]. The general
behavior resembles the high energy results of Ref. [26], for
the nonhalo weakly bound 7Be nucleus. In fact the almost
straight lines that represent the curves for Ec.m./VB = 0.84,
1.00, and 1.07 are fitted with P1 = −14.76, −62.60, and
−49.89 mb, and P2 = 4.11, 16.94, and 15.41 mb, respectively.
The rather large and negative values of P1 are presumably
traced back to barrier penetration effects, which limit the use
of the geometrical picture behind the scaling law. On the other
hand, at above-barrier energies the values of P2, which supply
the slopes of the curves, are practically equal. Accordingly, the
modified scaling law presented here should supply a useful
and easy way to estimate the nuclear breakup cross section
at other energies close to the barrier, and for other target
nuclei.

One can also derive a scaling law for the Coulomb
breakup cross section. In Fig. 6, we plot σ BU

Cou vs. ZT, for
the three systems discussed in the text. Panels (a), (b), and (c)
correspond, respectively, to results for E/VB = 0.84, 1.00,
and 1.07. The figures show that the Coulomb breakup cross
sections depend linearly on ZT, to a very good approximation.
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FIG. 6. (Color online) Scaling of the Coulomb breakup cross
sections as a function of ZT for the systems discussed in the text. (a),
(b), and (c) correspond, respectively, to results at Ec.m./VB = 0.84,
1.00, and 1.07.

This behavior can be qualitatively explained as follows. First,
we point out that the electromagnetic coupling matrix elements
are proportional to ZT, which leads to a Z2

T dependence in
the Coulomb breakup cross section. On the other hand, the
cross sections for reaction channels are proportional to a
1/Ec.m. factor [27]. Since in each panel the collision energy
corresponds to the same Ec.m./VB ratio, and VB is roughly
proportional to ZT, one gets a 1/ZT factor. The combination
of the two arguments presented above leads to the linear
dependence obtained in Fig. 6.

V. COMPARISON BETWEEN FUSION AND BREAKUP
CROSS SECTIONS

Now we compare the predicted integrated breakup cross
sections with the experimental values of the corresponding
fusion cross section. We consider the same systems of the
previous section, and use the fusion data of Refs. [28–30].
Figure 7 shows these comparisons. First, one notices that
the breakup cross section for the light 6Li + 59Co system
is nearly two orders of magnitude smaller than the fusion
cross section. Another interesting point is that the ratio of
these cross sections is roughly constant in the whole energy
interval of the figure. For the medium-mass and heavy systems,
6Li + 144Sm and 6Li + 208Pb, the situation is different. The
breakup cross section is dominant at low energies whereas the
fusion cross section dominates at high energies. The transition
takes place in the neighborhood of the Coulomb barrier. This
behavior is due to the Coulomb contribution to breakup. As
the energy decreases below the barrier, the fusion process falls
off exponentially. This is because fusion takes place when
the projectile tunnels through the potential barrier. On the
other hand, the decrease of Coulomb breakup is much slower.
As the collision energy decreases, the classical turning point
increases. Thus, the Coulomb part of the breakup coupling
becomes weaker. However, the electromagnetic interactions at
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FIG. 7. (Color online) Comparisons of the fusion and the breakup
cross sections for collisions of 6Li projectiles with the 59Co (a), 144Sm
(b), and 208Pb (c) targets, at near-barrier energies.

long distances fall as r−(λ+1) (where λ is the multipolarity of
the interaction), which is much slower than the exponential
fall off.

VI. CONCLUSIONS

We have investigated the nature of 6Li breakup in near-
barrier energy collisions, with targets in different mass ranges
(50Co, 144Sm, and 208Pb). Our theoretical cross sections are
based on CDCC calculations, which were shown to lead to
accurate predictions of the available scattering data.

For each system, we studied the importance of contributions
from the nuclear and from the Coulomb fields. We found that at
low enough energies (Ec.m. < 0.9 VB), the breakup process is
mainly due to Coulomb forces, for any scattering angle. In this
energy region, the nuclear and the Coulomb amplitudes for the
breakup process interfere destructively. In this way, the cross
section for pure Coulomb breakup may be larger than the cross
section arising from the simultaneous action of the Coulomb
and the nuclear fields. Above the Coulomb barrier, Coulomb
breakup was shown to dominate at forward angles whereas
nuclear breakup is dominant at larger angles. The transition
takes place at some angle θ0, which increases with decreasing
energies. A study of the energy dependence of the transition
angle indicated that it becomes nearly system independent if
plotted as a function of the energy normalized with respect to
the Coulomb barrier.
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We have shown that the nuclear breakup cross section has a
nearly linear dependence of A

1/3
T as suggested in Ref. [26], for

collisions at higher energies. On the other hand, the Coulomb
breakup cross section was shown to depend linearly of the
target charge, as could be predicted by qualitative arguments.

Finally, we made a comparison of our theoretical breakup
cross sections with the available fusion data. We concluded
that the latter are about two orders of magnitude larger than the

former for the light 6Li + 50Co system. For heavier systems,
the breakup cross section becomes more important below the
Coulomb barrier.
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