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2Instituto de Estudos Avançados da Universidade de São Paulo,

Caixa Postal 72012, 05508-970, São Paulo, SP, Brazil
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We propose an extension of the Continuum Discretized Coupled Channels (CDCC) method, where
the projectile is described by a microscopic cluster model. This microscopic generalization (MCDCC)
only relies on nucleon-target interactions, and therefore presents an important predictive power.
Core excitations can be included without any further parameter. As an example we investigate the
7Li+208Pb elastic scattering at Elab = 27 and 35 MeV. The 7Li nucleus is known to present an α+t
cluster structure, and is well described by the Resonating Group Method. An excellent agreement is
obtained for the 7Li+208Pb cross sections, provided that breakup channels are properly included. We
also present an application to inelastic scattering, and discuss future applications of the MCDCC.

The study of exotic nuclei is of major interest in cur-
rent nuclear physics research [1, 2]. These nuclei present
unusual properties, such as a low breakup threshold and
an anomalously large rms radius. Experimentally they
are investigated through secondary reactions induced by
radioactive beams [3]. The first breakthrough in this field
was the discovery of a large radius of the 11Li isotope [4],
and lead to the definition and introduction of ”halo” nu-
clei in the nuclear nomenclature. A halo nucleus is con-
sidered as a tightly bound core nucleus surrounded by one
or two weakly bound nucleons. Thanks to the recent de-
velopment of experimental facilities, other exotic nuclei,
such as 6He, 8B and 14Be, can now be produced with high
intensities. In recent years, the effects of low breakup
threshold energies have been experimentally studied in
various processes, such as elastic scattering [5], elastic
breakup [6], and fusion [7]. As a general statement, the
large rms radius of exotic nuclei has a strong impact on
the nucleus-nucleus interaction, as it extends further the
range of the nuclear component.

An accurate description of the breakup processes re-
quires high quality reaction models. A scattering model
essentially relies on two ingredients: (i) a description of
the quantum scattering process itself; (ii) a reliable wave
function that faithfully describes the exotic projectile.
The detailed description of the projectile is a crucial is-
sue in the field, as standard approximations, neglecting
the structure of the colliding nuclei, are not appropriate.

At high energies, the Glauber model [8], using the
eikonal approximation [9, 10] provides an accurate de-
scription of various cross sections. The early calculations,
based on the adiabatic approximation, were recently ex-
tended to include excited or breakup states of the projec-
tile [11, 12]. The eikonal approximation provides a rather
great simplification of the Schrödinger equation. This
makes it possible to perform two-body and three-body
breakup calculations, with correct treatment of scatter-
ing boundary conditions [13, 14].

At low energies (i.e. typically around the Coulomb bar-

rier) the eikonal approximation is not valid. In this en-
ergy regime, the Continuum Discretized Coupled Chan-
nel (CDCC) method has proved to be an accurate the-
oretical tool [15, 16]. It was originally developed for
deuteron-induced reactions [17]. Owing to the low bind-
ing energy of the deuteron, the theoretical description of
the d + nucleus elastic cross section could be significantly
improved by including the coupling to the breakup chan-
nel (d→ p+n). Accordingly, owing to to the low binding
energies involved, the CDCC is an ideal reaction theory
for exotic nuclei.

In standard CDCC calculations, the projectile is de-
scribed by a two-body structure, where the constituents
interact through an appropriate potential (fitting, for ex-
ample, the ground-state energy). The internal Hamil-
tonian is then solved over a basis, and the associated
eigenstates are used as a basis for the full projectile-
target problem. Position-energy states are referred to
as pseudostates (PS) and they provide an approximation
of the core-fragment continuum. In addition to the text-
book example d+58Ni reaction [18], many other reactions
have been recently investigated within this framework
(see Ref.[19] for a recent review). The formalism has
been extended further to three-body projectiles [20, 21]
to deal with two-neutron halo nuclei such as 6He and
11Li, so-called Borromean nuclei.

These traditional CDCC calculations, however, present
several shortcomings. The Hamiltonian associated with
the system requires optical potentials between the target
and the projectile constituents. If optical potentials are
in general available for nucleons and α particles, rough
approximations should often be used for beam nuclei such
as 9Li and 10Be. Another limitation comes about from
the potential model description of the projectile. If this
approximation is, in most cases, reasonable, it may in-
troduce inaccuracies in the cross section. In particular,
core excitations are known to be important on many ex-
otic nuclei, and the effect is absent from most CDCC
calculations.
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In this Letter, we propose a new approach to CDCC
calculations, by using a microscopic cluster description
of the projectile. In the microscopic CDCC approach
(MCDCC), the projectile (with Ap nucleons) is described
by a many-body Hamiltonian

H0 =

Ap∑
i=1

ti +

Ap∑
i<j=1

vij , (1)

where ti is the kinetic energy operator of nucleon i, and
vij a nucleon-nucleon interaction. Hamiltonian (1) is
common to all microscopic theories such as the Fermionic
Molecular Dynamics [22], the No-Core Shell Model [23],
or the Variational Monte-Carlo method [24]. However,
a fundamental issue in CDCC calculations is the ability
of the model to describe continuum states of the projec-
tile and how they influence the reaction dynamics. We
therefore use here the cluster approximation, known as
the Resonator Group Method (RGM) [25, 26], where an
eigenstate of the Hamiltonian (1) is written as an anti-
symmetric product of cluster wave functions. The RGM,
and the equivalent Generator Coordinate Method (GCM,
[27]), have been applied to spectroscopic and scattering
properties of many systems (see Ref. [26] and references
therein). In the present exploratory work, we consider
7Li as projectile. The RGM-GCM is well known to repro-
duce many spectroscopic features of this weakly bound
nucleus (as well as its mirror partner, 7Be), by assuming
an α + t structure (or α+3He for the mirror partner)
[28]. In other words, the 7Li wave functions associated
with H0 are defined as,

φ`jmk = A
[
[φα ⊗ φt]1/2 ⊗ Y`(Ωρ)

]jm
g`jk (ρ), (2)

where φα and φt are shell model (SM) wave functions of
the α and t clusters, l is the angular momentum and j,
the total spin. In Eq. (2), ρ is the relative coordinate
(see Fig. 1), and A is the 7-body anti-symmetrization
operator which takes into account the Pauli exclusion
principle among the 7 nucleons of the projectile. The rel-

ative wave function g`jk (ρ), where k labels the bound and
continuum states, are determined from the Schrödinger
equation associated with H0. In general the RGM equa-
tion is non-local [25]. The GCM is exactly equivalent
to the RGM, but is better adopted to numerical calcula-
tions, as it makes use of Slater determinants (SD). The
wave function (2) is therefore written as

φ`jmk =

∫
f `jk (S)Φ`jm(S) dS, (3)

where S is the generator coordinate, f `jk (S) the generator

function, and Φ`jm(S) a 7× 7 projected Slater determi-
nant with four 0s orbitals centered at 3R/7, and three
0s orbitals centered at 4R/7. Using the SD in the calcu-
lation of matrix elements of H0 (and of other operators,
such as the electromagnetic ones), is quite systematic,
and can be extended to the p and sd shells, even with
core excitations [29].

FIG. 1. Schematic picture of the projectile-target system,
with a microscopic cluster structure of the projectile. Coor-
dinates R and ρ are defined in the text.

Starting from the GCM functions for the projectile,
the total Hamiltonian of the scattering system is,

H = H0 + TR +

A∑
i=1

Vti(rrri −RRR), (4)

where RRR is the projectile-target relative coordinate (see
Fig. 1) and Vti are the nucleon-target interactions. The
MCDCC approach presents many advantages: (1) the
projectile wave functions are fully anti-symmetric, and
not limited to bound states; (2) core excitations can be
included in a straightforward way; (3) the model only re-
lies on nucleon-target optical potentials. This potential
is in general well known, and is independent of the pro-
jectile. The predictive power of the model is therefore
expected.

The last step of the MCDCC is to project the total
wave function onto one with specified spin, J , and parity,
π,

ΨJMπ =
1

R

∑
cL

[
φ`jk ⊗ YL(ΩR)

]JM
uJπcL (R), (5)

where L is the relative angular momentum, and the index
c, stands for c = (`, j, k). The radial wave functions
uJπcL (R) are obtained from the coupled-channels system
of equations,

− ~2

2µ

[
d2

dR2
− L(L+ 1)

R2

]
uJπcL

+
∑
c′L′

V JπcL,c′L′uJπc′L′ = (E − Ec)uJπcL , (6)

where Ec are the projectile energies, and where the cou-
pling potentials V JπcL,c′L′(R) re obtained from the matrix
elements,

Vcc′(RRR) = 〈Φ`jk |
A∑
i=1

Vti(rrri −RRR)|Φ`
′j′

k′ 〉, (7)

and from additional algebraic coefficients. Equation (7)
involves one-body matrix elements, which can be com-
puted by using standard formula [30]. The system (6) is
then solved by using the R-matrix method [31, 32]. The
solution provides the scattering matrix for all (Jπ) val-
ues, and consequently the various cross sections (elastic
scattering, breakup, fusion, etc.).



3

As mentioned above, our first application of the
MCDCC deals with 7Li elastic scattering on a heavy tar-
get, which we take here to be 208Pb. As the MCDCC
involves heavy numerical calculations, we illustrate the
power of the method in a simple case, where 7Li is de-
scribed as a α + t cluster structure. The system only in-
volves 0s orbitals (with an oscillator parameter b = 1.45
fm) and core excitations are absent.

The 7Li wave functions are defined from a discretiza-
tion of Eq.(3) with 20 values of the generator coordi-
nator S, ranging from 0.8 fm to 16 fm in steps of 0.8
fm. The nucleon-nucleon interaction vij (see Eq.(1)) is
taken as the Minnesota force [28], complemented with
a zero-range spin-orbit term [33]. Taking for the ad-
mixture parameter u = 1.011, and for the spin-orbit
amplitude S0 = 20 MeV.fm5, one reproduces the 3/2−

ground state and the 1/2− state energies simultaneously.
In the α + t wave functions, jmax = 7/2 (with both
parities), and pseudostates up to 20 MeV are included.
Various tests have been performed to test the stability of
the calculated cross sections against the cut-off energy.
This microscopic cluster model is very similar to those
used in the past to describe the spectroscopy of 7Li and
the 3H(α, γ)7Li cross sections [34]. A test is provided
by the electromagnetic transition probabilities and by
the quadrupole moment. For the B(E1, 3/2− → 1/2−)
value, the GCM gives 7.5 e2.fm4, in good agreement with
experiment 8.3 ± 0.5 e2.fm4. The theoretical and exper-
imental values of the ground-state quadrupole moment
are −37.0 e mb and −40.6± 0.8 e mb, respectively.

The 7Li wave functions (including the pseudo states)
are then used to determine the coupling potentials (7).
With our conditions, the number of 7Li states are 6,6,6,5
for j = 1/2+ to j = 7/2+), and 7,7,6,7 for j = 1/2−)
to j = 7/2−). The neutron-208Pb optical potential (at
En = Elab/7) is taken Ref. [35]. The proton-208Pb cross
section at Ep = Elab/7 is identical to the Rutherford
cross section [36], and the corresponding interaction only
involves the Coulomb potential.

The coupled-channel equations (6) are then solved with
the R-matrix method, as alluded to above. For high par-
tial waves, the number of (cL) values can be quite large
(up to ). Owing to the long-range nature of the dipole
Coulomb potentials, large channel radii must be used.
Many numerical tests have been performed to check the
stability of the results against the chosen channel radius
and the number of basis functions. In Fig. 2, we present
the elastic scattering cross sections at Elab = 27 and
35 MeV. The calculations have been performed by in-
creasing the number of 7Li states. Obviously, the single-
channel approach, limited to the 7Li ground state is not
able to reproduce the data. At Elab = 27 MeV, a slight
improvement is obtained by including the 1/2− excited
state. At both energies, however, an excellent agreement
can only be achieved by including all breakup channels
up to j = 7/2. A non-microscopic CDCC calculation
[37] requires a renormalization of the α−208Pb and the
t +208Pb optical potentials by a factor 0.6. Therefore

our approach presents a more powerful predictive proce-
dure as, contrary to the former, it contains no adjustable
parameters.

FIG. 2. 7Li+208Pb elastic scattering at Elab = 27 MeV (a)
and 35 MeV (b). Dotted lines represent the calculations with-
out breakup channels, and the solid lines are the full calcu-
lations with increasing α-t angular momentum jmax. Exper-
imental data are from Ref. [38].

Our model can be further tested through the calcula-
tion of the inelastic cross section, presented in Fig. 3.
This cross section is much smaller than the elastic one,
and is more sensitive to the details of the wave function.
Notwithstanding that no fitting procedure has been ap-
plied, the agreement with the data is reasonably fair.
Here again, the role of the breakup channels is not neg-
ligible. In particular the second excited state, j = 7/2

−

slightly reduces the cross section.

Thus exploratory work on the 7Li + 208PB elastic scat-
tering shows that the MCDCC is a powerful tool for
the description of low-energy reactions of weakly bound
nuclei, where breakup coupling is important. It is cer-
tainly particularly suited to the scattering of exotic nu-
clei, which present even lower breakup thresholds, en-
hancing the effect of these channels. The model is only
based on nucleon-target optical potentials, which are
available over a wide range of masses and bombarding
energies. Without any renormalization factors, we have
shown that 7Li + 208Pb elastic and inelastic cross sec-
tions data can be fairly well reproduced provided that
breakup channels are properly included in the calcula-
tion. The present approach opens many new perspectives
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FIG. 3. Inelastic 7Li+208Pb→7Li(1/2−)+208Pb cross sec-
tion at Elab = 27 MeV. The data are taken from Ref. [39]
(black circles) and [37] (open circles). The MCDCC curves
for jmax = 3/2 and jmax = 5/2 are superimposed at the scale
of the figure.

in nucleus-nucleus reaction calculations at low energies.
We concentrated here on 7Li, a well known α + t cluster
nucleus. However, extending Eq. (2) to include core exci-
tations is quite feasible. In fact, many microscopic cluster

structure calculations have been performed with core ex-
citations (see, e.g., Ref. [40] for 11Be, and Ref. [41] for
17C). Calculations for these exotic nuclei are much more
involved, but the model itself is identical. Besides, the
present model can be easily extended to three-cluster pro-
jectiles, such as the Borromean two-neutron halo nuclei,
6He and 11Li, where RGM wave functions are available
[42, 43]. Finally, other processes such as breakup reac-
tions and fusion reactions, both of great current interest,
can be described by simple generalizations of the present
work.
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Beńıtez, A. Shotter, O. Tengblad, and P. Walden, Phys.
Rev. Lett. 110, 142701 (2013).

[7] L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S.
Hussein, Phys. Rep. 424, 1 (2006).

[8] R. J. Glauber, High energy collision theory, in Lectures in
Theoretical Physics, Vol. 1, edited by W. E. Brittin and
L. G. Dunham (Interscience, New York, 1959) p. 315.

[9] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga,
Structure and Reactions of Light Exotic Nuclei (Taylor
& Francis, London, 2003).

[10] L. F. Canto and M. S. Hussein, Scattering Theory of
Molecules, Atoms and Nuclei (World Scientific Publish-
ing, 2013).

[11] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73,
024602 (2006).

[12] K. Ogata, M. Yahiro, Y. Iseri, T. Matsumoto, and
M. Kamimura, Phys. Rev. C 68, 064609 (2003).

[13] D. Baye, P. Capel, P. Descouvemont, and Y. Suzuki,
Phys. Rev. C 79, 024607 (2009).

[14] E. C. Pinilla, P. Descouvemont, and D. Baye, Phys. Rev.
C 85, 054610 (2012).

[15] M. Kamimura, M. Yahiro, Y. Iseri, S. Sakuragi,
H. Kameyama, and M. Kawai, Prog. Theor. Phys. Suppl.
89, 1 (1986).

[16] N. Austern, Y. Iseri, M. Kamimura, M. Kawai, G. Raw-
itscher, and M. Yahiro, Phys. Rep. 154, 125 (1987).

[17] G. H. Rawitscher, Phys. Rev. C 9, 2210 (1974).
[18] A. M. Moro, J. M. Arias, J. Gómez-Camacho, and
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